Додекаэдр

это правильный многогранник, составленный из двенадцати равносторонних пятиугольников.

Додекаэдр имеет 20 вершин и 30 рёбер. Вершина додекаэдра является вершиной трёх пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

Охотникова Адэлина

Общие понятия о фигуре

Додекаэдр – это слово взято из языка древних греков, которое буквально означает "фигура с 12-ю гранями". Его грани представляют собой многоугольники. Учитывая свойства пространства, а также определение додекаэдра, можно сказать, что его многоугольники могут иметь 11 сторон и меньше. Если грани фигуры образованы правильными пентагонами (многоугольник, имеющий 5 сторон и 5 вершин), то такой додекаэдр называется правильным, он входит в число 5-ти платоновских объектов.

Математические формулы для правильного додекаэдра

Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. Эти формулы позволяют вычислить площадь его поверхности, объем, а также определить радиусы сфер, которые можно вписать в фигуру или описать вокруг нее:

1
формулы
Площадь поверхности додекаэдра, которая представляет собой произведение 12-ти площадей пятиугольников со стороной "a", выражается следующей формулой: S = 3*√(25 + 10*√5)*a2. Для приблизительных расчетов можно пользоваться выражением: S = 20,65*a2.
2
формулы
Объем правильного додекаэдра, как и его суммарная площадь граней, однозначно определяется из знания стороны пятиугольника. Эта величина выражается следующей формулой: V = 1/4*(15 + 7*√5)*a3, что приблизительно равно: V = 7,66*a3.
3
формулы
Радиус вписанной окружности, которая касается внутренней стороны граней фигуры в их центре, определяется так: R1 = 1/4*a*√((50 + 22*√5)/5), или приблизительно R1 = 1,11*a.
4
формулы
Описанную окружность проводят через 20 вершин правильного додекаэдра. Ее радиус определяется формулой: R2 = √6/4*a*√(3 + √5), или приблизительно R2 = 1,40*a. Приведенные цифры говорят, что радиус внутренней сферы, вписанной в додекаэдр, составляет 79 % от такового для описанной сферы.

Для додекаэдра характерны следующие элементы симметрии:

01.

элемент симметрии

6 осей пятого порядка (то есть поворот фигуры осуществляется на угол 360/5 = 72°), которые проходят через центры расположенных напротив друг друга пятиугольников
02.

элемент симметрия

15 осей второго порядка (симметричный угол поворота равен 360/2 = 180°), которые соединяют середины противоположных ребер октаэдра
03.

элемент симметрия

15 плоскостей отражения, проходящих через расположенные напротив ребра фигуры
04.

элемент симметрия

10 осей третьего порядка (операция симметрии осуществляется при повороте на угол 360/3 = 120°), которые проходят через противоположные вершины додекаэдра

Современное использование додекаэдра

В настоящее время геометрические объекты в форме додекаэдра находят применение в некоторых сферах деятельности человека:

Игральные кости для настольных игр. Так как додекаэдр – это платоновская фигура, обладающая высокой симметрией, то объекты этой формы можно использовать в играх, где продолжение событий имеет вероятностный характер. Игральные кости в своем большинстве изготавливают кубической формы, поскольку их сделать проще всего, однако современные игры становятся все сложнее и разнообразнее, а значит, требуют костей с большим количеством возможностей. Кости в форме додекаэдра применяются в ролевой настольной игре Dungeons and Dragons. Особенностью этих костей является то, что сумма цифр, расположенных на противоположных гранях, всегда равна 13.

Источники звука. Современные звуковые колонки часто изготавливают в форме додекаэдра, поскольку они распространяют звук во всех направлениях и защищают его от окружающего шума.

Додекаэдр в жизни

  • Изображение
  • Изображение
  • Изображение